Einzelansicht
Keine Credits bei Lehrveranstaltungen angegeben
Bei den Modulen unten sind Credits angegeben, bei der (modulunabhängigen) Lehrveranstaltungsliste nicht. Dies liegt darin begründet, dass die Lehrveranstaltungen erst im Kontext eines Modules Credits erhalten. Auch wenn der Fall selten eintritt, ist so die Möglichkeit gegeben, dass die selbe Veranstaltung in unterschiedlichen Studiengängen unterschiedlichen Workload und Credits erhalten kann.
Üblicherweise gilt aber weiterhin natürlich die Faustregel Cr = 1,5 * SWS.
zum Word-Export dieser Ansicht
Für die Überarbeitung der Module ist es das einfachste, diese Liste zu exportieren, mit aktiver "Änderungsnachverfolgung" zu überarbeiten und das Ergebnis an die AG Modulhandbuch zu schicken. Als Grundlage dafür können Sie den Word-Export oben nutzen.
https://www.uee.wiwi.uni-due.de/Juniorprofessur für Umweltökonomik, insb. Ökonomik erneuerbarer Energien | |
---|---|
zugeordnetes Lehrpersonal | Kulakov (M.Sc. Sergei Kulakov) wissenschaftliche Mitarbeiter(innen) ( wissenschaftliche Mitarbeiter(innen)) Ziel (Prof. Dr. Florian Ziel) |
Verantwortete Module
Modul (6 Credits)
Advanced Forecasting in Energy Markets
- Name im Diploma Supplement
- Advanced Forecasting in Energy Markets
- Verantwortlich
- Voraussetzungen
- Siehe Prüfungsordnung.
- Workload
- 180 Stunden studentischer Workload gesamt, davon:
- Präsenzzeit: 30 Stunden
- Vorbereitung, Nachbereitung: 110 Stunden
- Prüfungsvorbereitung: 40 Stunden
- Dauer
- Das Modul erstreckt sich über 1 Semester.
- Qualifikationsziele
The students
- have an advanced understanding of forecasting concepts and techniques applied in energy markets
- will use statistical software R to fit estimation and forecasting algorithms to real world data
- can visualize and interpret obtained results
- Prüfungsmodalitäten
Weighted average of a group R-project and a presentation (usually about 20 minutes).
- Verwendung in Studiengängen
- Bestandteile
- SEM: Advanced Forecasting in Energy Markets (6 Credits)
Modul (6 Credits)
Econometrics of Electricity Markets
- Name im Diploma Supplement
- Econometrics of Electricity Markets
- Verantwortlich
- Voraussetzungen
- Siehe Prüfungsordnung.
- Workload
- 180 Stunden studentischer Workload gesamt, davon:
- Präsenzzeit: 60 Stunden
- Vorbereitung, Nachbereitung: 80 Stunden
- Prüfungsvorbereitung: 40 Stunden
- Dauer
- Das Modul erstreckt sich über 1 Semester.
- Qualifikationsziele
The students
- have an advanced understanding of electricity markets
- understand regression based modeling methods for electricity prices
- can apply estimation and forecasting algorithms to real data using the statistical Software R
- able to interpret and to visualize the results
- Prüfungsmodalitäten
Equally weighted average of a group R-project and a presentation (usually about 20 minutes).
- Verwendung in Studiengängen
- Bestandteile
- VO: Econometrics of Electricity Markets (3 Credits)
- UEB: Econometrics of Electricity Markets (3 Credits)
Modul (6 Credits)
Energy Forecasting Competition
- Name im Diploma Supplement
- Energy Forecasting Competition
- Verantwortlich
- Voraussetzungen
- Siehe Prüfungsordnung.
- Workload
- 180 Stunden studentischer Workload gesamt, davon:
- Präsenzzeit: 60 Stunden
- Vorbereitung, Nachbereitung: 100 Stunden
- Prüfungsvorbereitung: 20 Stunden
- Dauer
- Das Modul erstreckt sich über 1 Semester.
- Qualifikationsziele
The students
- learn concepts to produce and evaluate probabilistic forecasts
- can produce forecasts using python or R for time series data from energy systems and markets
- learn basics about forecasting competitons
- learn characteristics of energy time series data sets (e.g. including energy consumption, energy prices, wind and solar production, etc.)
- learn to visualize, report and present results
- Praxisrelevanz
The module is highly relevant for practice, not only in the energy industy. Students acquire skills that are useful in data projects, operations and evaluation.
- Prüfungsmodalitäten
Zum Modul erfolgt eine modulbezogene Prüfung in Form der Entwicklung eines Prognosemodells (20 % der Note), Ausarbeitung zum Modell (Hausarbeit, 50% der Note) sowie Präsentation (in der Regel: 20-40 Minuten, 30 % der Note).
- Verwendung in Studiengängen
- Bestandteile
- VIS: Energy Forecasting Competition (6 Credits)
Modul (6 Credits)
Portfolio Management
- Name im Diploma Supplement
- Portfolio Management
- Verantwortlich
- Voraussetzungen
- Siehe Prüfungsordnung.
- Workload
- 180 Stunden studentischer Workload gesamt, davon:
- Präsenzzeit: 60 Stunden
- Vorbereitung, Nachbereitung: 90 Stunden
- Prüfungsvorbereitung: 30 Stunden
- Dauer
- Das Modul erstreckt sich über 1 Semester.
- Qualifikationsziele
Students
- have an advanced understanding in portfolio management
- study modern portfolio optimization methods that take uncertainty into account
- are able to apply the portfolio theory to real problems, especially in financial and commodity markets
- Prüfungsmodalitäten
Zum Modul erfolgt eine modulbezogene Prüfung in der Gestalt einer Klausur (in der Regel: 90-120 Minuten).
- Verwendung in Studiengängen
- Bestandteile
- VO: Portfolio Management (3 Credits)
- UEB: Portfolio Management (3 Credits)
Modul (6 Credits)
Umweltökonomik und erneuerbare Energien
- Name im Diploma Supplement
- Environmental Economics and Renewable Energy
- Verantwortlich
- Voraussetzungen
- Siehe Prüfungsordnung.
- Workload
- 180 Stunden studentischer Workload gesamt, davon:
- Präsenzzeit: 60 Stunden
- Vorbereitung, Nachbereitung: 80 Stunden
- Prüfungsvorbereitung: 40 Stunden
- Dauer
- Das Modul erstreckt sich über 1 Semester.
- Qualifikationsziele
Die Studierenden
- erörtern die Ursachen für Marktversagen in umweltwirtschaftlichen Kontexten
- können Themen der Regulierung in der Umweltökonomik erläutern, insbesondere zum Umgang mit externen Effekten
- wenden grundlegende Begriffe, Konzeptionen, Modelle und Theorien mit Hilfe von mathematischen und statistischen Methoden auf unterschiedliche spezifische Sachverhalte an
- analysieren und vergleichen hierbei wissenschaftliche Positionen und Modelle im umwelt- und energiepolitischen Umfeld
- kennen und verstehen die Charakterisika euneuerbarer Energien, insbesondere von Wind- und Solarenergie
- beurteilen reale politische und ökonomische Sachverhalte und begründen und untermauern diese mit wirtschaftswissenschaftlichen Argumenten , insbesondere im Bereich der erneuerbarer Energien
- Prüfungsmodalitäten
Zum Modul erfolgt eine modulbezogene Prüfung in der Gestalt einer Klausur (in der Regel: 90-120 Minuten).
Die Prüfung in diesem Modul darf nicht abgelegt werden, wenn "Energie- und Umweltpolitik" bereits bestanden ist.
- Verwendung in Studiengängen
- Bestandteile
- VO: Umweltökonomik und erneuerbare Energien (3 Credits)
- UEB: Umweltökonomik und erneuerbare Energien (3 Credits)
Angebotene Lehrveranstaltungen
Seminar
Advanced Forecasting in Energy Markets
- Name im Diploma Supplement
- Advanced Forecasting in Energy Markets
- Anbieter
- Lehrperson
- SWS
- 2
- Sprache
- englisch
- Turnus
- unregelmäßig
- maximale Hörerschaft
- 20
- empfohlenes Vorwissen
Good knowledge of linear models and autoregressive processes. Experienced R knowledge. Sucessful participation in Econometrics of Electricity Markets is very helpful.
- Abstract
The purpose of this seminar is to provide an advanced understanding of modeling and forecasting methods in energy markets, esp. concerning probabilistic forecasting. The students apply sophisticated forecasting methods to real data (e.g. electricity or natural gas prices, electricity load, wind and solar power production) using the statistical Software R. They write a report and present their findings.
The focus of the seminar is placed especially on probabilistic forecasting with different applications in e.g. electricity price and electricity load or wind and solar power production forecasting. A particular attention is given to regression-based modeling methods for electricity market data.
- Lehrinhalte
- Introduction to probabilistic forecasting
- Forecasting evaluation in probabilistic forecasting frameworks
- Applications to energy market data
- Literaturangaben
- Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., & Hyndman, R. J. (2016). Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond.
- Nowotarski, J., & Weron, R. (2017). Recent advances in electricity price forecasting: A review of probabilistic forecasting. Renewable and Sustainable Energy Reviews.
- didaktisches Konzept
In the first few weeks the students learn the concepts of probabilistic forecasting in classes. Afterwards they apply the methods to energy market data using R, write a report and present their results.
- Hörerschaft
Vorlesung
Econometrics of Electricity Markets
- Name im Diploma Supplement
- Econometrics of Electricity Markets
- Anbieter
- Lehrperson
- SWS
- 2
- Sprache
- englisch
- Turnus
- unregelmäßig
- maximale Hörerschaft
- 24
- empfohlenes Vorwissen
- Good knowledge of linear models.
- R knowledge (esp. functions like lm)
- Understanding of AR(p) processes is very helpful
- Abstract
The objective of the lecture is to provide a basic understanding of electricity markets and regression based modeling methods for electricity prices. The aim of this course is to apply estimation and forecasting algorithms to real data using the statistical Software R, to interpret and to visualize the results.
- Lehrinhalte
- Introduction to electricity markets
- Overview of different model approaches
- Regression based modeling methods for electricity prices
- Forcasting and evaluation techniques
- Advanced estimation and modeling approaches
- Literaturangaben
The relevant material will be given during the course.
Suggested reading:
Weron, Rafał. "Electricity price forecasting: A review of the state-of-the-art with a look into the future." International Journal of Forecasting 30.4 (2014): 1030-1081.
- didaktisches Konzept
Lecture. The studied modeling an forecasting methods are applied on real data using the statistical sofware R.
- Hörerschaft
Übung
Econometrics of Electricity Markets
- Name im Diploma Supplement
- Econometrics of Electricity Markets
- Anbieter
- Lehrperson
- SWS
- 2
- Sprache
- englisch
- Turnus
- unregelmäßig
- maximale Hörerschaft
- 24
- empfohlenes Vorwissen
See Lecture
- Lehrinhalte
See Lecture
- Literaturangaben
See Lecture
- didaktisches Konzept
Tutorials. The students apply the learned methods in a own real data project.
- Hörerschaft
Vorlesung mit integriertem Seminar
Energy Forecasting Competition
- Name im Diploma Supplement
- Energy Forecasting Competition
- Anbieter
- Lehrperson
- SWS
- 4
- Sprache
- englisch
- Turnus
- unregelmäßig
- maximale Hörerschaft
- unbeschränkt
- empfohlenes Vorwissen
Basics in R or python, basics in data science or statistics.
- Abstract
In the first third of the Module the students study the competition design, the forecast evaluation methods, benchmark methods and forecasting principles in general in a lecture. The competition task and the corresponding data sets will be released immediately. In the second part the student construct their own forecasting model for the competition and submit their forecasts. Shortly afterwards the results will be released. In the third part of the students write a report on the prediction methods and present their finding.
- Lehrinhalte
- Introduction on forecasting competitions
- Competition design and reporting of forecasts
- Evaluation metrics
- Benchmark methods
- Options for improving forecasts
- Literaturangaben
- Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., & Hyndman, R. J. (2016). Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond. International Journal of Forecasting, 32(3), 896-913.
- Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2020). The M4 Competition: 100,000 time series and 61 forecasting methods. International Journal of Forecasting, 36(1), 54-74.
- Further Literature will be mentioned during the lecture.
- didaktisches Konzept
Classic lectures + Learning by doing
Die Veranstaltung entspricht einem Vorlesungsanteil von 2 SWS und einem Seminaranteil von 2 SWS.
- Hörerschaft
Vorlesung
Portfolio Management
- Name im Diploma Supplement
- Portfolio Management
- Anbieter
- Lehrperson
- SWS
- 2
- Sprache
- englisch
- Turnus
- unregelmäßig
- maximale Hörerschaft
- unbeschränkt
- empfohlenes Vorwissen
matrix algebra and multivariate statistics (esp. multivariate normal distribution)
- Abstract
The students study the general Markowitz portfolio theory on optimal portfolio selection with and without risk-free asset. They study problems in the application concerning estimation risk, like the Jobson-Korkie experiment and possible solutions. The theory is applied to problem in financial and commodity markets.
- Lehrinhalte
- Introduction to portfolio theory
- Markowitz portfolio theory without risk-free asset
- Markowitz portfolio theory with risk-free asset
- Estimation risk and Jobson-Korkie experiment
- Optimal portfolio allocation under parameter uncertainty
- Literaturangaben
- Brandt, M. W. (2009). Portfolio choice problems. Handbook of financial econometrics, 1, 269-336.
- Kan, R., & Zhou, G. (2007). Optimal portfolio choice with parameter uncertainty. Journal of Financial and Quantitative Analysis, 42(3), 621-656.
- Tu, J., & Zhou, G. (2011). Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies. Journal of Financial Economics, 99(1), 204-215.
- didaktisches Konzept
The students study portfolio management theory in the lecture. They discuss and apply the theory in tutorials.
- Hörerschaft
Übung
Portfolio Management
- Name im Diploma Supplement
- Portfolio Management
- Anbieter
- Lehrperson
- SWS
- 2
- Sprache
- englisch
- Turnus
- unregelmäßig
- maximale Hörerschaft
- unbeschränkt
- empfohlenes Vorwissen
See Lecture
- Lehrinhalte
See Lecture
- Literaturangaben
See Lecture
- didaktisches Konzept
See Lecture
- Hörerschaft
Vorlesung
Umweltökonomik und erneuerbare Energien
- Name im Diploma Supplement
- Environmental Economics and Renewable Energy
- Anbieter
- Lehrperson
- SWS
- 2
- Sprache
- deutsch
- Turnus
- Wintersemester
- maximale Hörerschaft
- unbeschränkt
- empfohlenes Vorwissen
Grundkenntnisse in Mikroökonomik, Mathematik und Statistik sind sehr hilfreich. Grundkenntnisse in Energieökonomik sind hilfreich.
- Abstract
In der Vorlesung werden im ersten Teil Grundkenntnisse und der Umweltökonomik gelehrt. Neben der ensprechenden Theorie, werden insbesondere Klima und Energie bezogene Problemstellungen diskutiert. Im zweiten Teil der Vorlesung werden erneuerbare Energien im wirtschaftswissenschaftlichen Kontext behandelt. Hierbei liegt der Fokus auf der empirischen und theoretischen Analyse von Wind- und Solarenergie.
- Lehrinhalte
- Grundbegriffe der Umweltökonomik (wie Ökosystem, Nachhaltigkeit, Marktversagen, Öffentliche Güter, Externalitäten)
- Internalisierung Externer Effekte
- Grundkenntnisse zu erneuerbaren Energien und energie- und umweltökonomische Einordnung
- Charakteristika von Wind und Solarenergie
- Literaturangaben
- Endres, A. (2013). Umweltökonomie: Lehrbuch. W. Kohlhammer Verlag.
- Sturm, B., & Vogt, C. (2011). Umweltökonomik: eine anwendungsorientierte Einführung. Springer-Verlag.
- Kaltschmitt, M., Streicher, W., & Wiese, A. (2006). Erneuerbare Energien. Springer-Verlag Berlin Heidelberg.
- Wokaun, A. (2013). Erneuerbare Energien. Springer-Verlag.
- Hörerschaft
Übung
Umweltökonomik und erneuerbare Energien
- Name im Diploma Supplement
- Environmental Economics and Renewable Energy
- Anbieter
- Lehrperson
- SWS
- 2
- Sprache
- deutsch
- Turnus
- Wintersemester
- maximale Hörerschaft
- unbeschränkt
- empfohlenes Vorwissen
siehe Vorlesung
- Lehrinhalte
siehe Vorlesung
- Literaturangaben
siehe Vorlesung
- Hörerschaft