Module: Financial Mathematics (6 Credits)

Name in diploma supplement

Financial Mathematics

Responsible

Prof. Dr. Rüdiger Kiesel

Admission criteria

See exam regulations.

Workload

180 hours of student workload, in detail:
  • Attendance: 60 hours
  • Preparation, follow up: 60 hours
  • Exam preparation: 60 hours

Duration

The module takes 1 semester(s).

Qualification Targets

Students
  • know the most important mathematical modelling techniques of financial markets and can apply them to real word problems.
  • are able to value simple derivative assets and can apply the main principles of risk management.
  • are able to solve basic risk management tasks arising in financial institutions and the energy industry.

Relevance

The discussed models and the used quantitative techniques are common standard and frequently used in financial institutions and the energy industry.

Module Exam

Written exam (generally 90 minutes).

Usage in different degree programs

  • BWL EaF Master > Wahlpflichtbereich > 1.-3. Sem, Elective
  • ECMX Master > Wahlpflichtbereich > ME6 Applied Econometrics > 1.-3. Sem, Elective
  • LA gbF/kbF BK Master > Masterprüfung in der kleinen beruflichen Fachrichtung > Finanz- und Rechnungswesen, Steuern > Wahlpflichtbereich Kleine berufliche Fachrichtung "Finanz- und Rechnungswesen, Steuern" > 1.-3. Sem, Elective
  • MuU Master > Wahlpflichtbereich III > Wahlpflichtbereich III A.: Märkte und Unternehmen aus Unternehmensperspektive > 1.-3. Sem, Elective
  • VWL Master > Wahlpflichtbereich I > 1.-3. Sem, Elective
  • WiMathe Master > VWL-Energie > 1.-4. Sem, Elective

Elements

  • Lecture Financial Mathematics (3 Credits)
  • Exercise Financial Mathematics (3 Credits)

Module: Financial Mathematics (WIWI‑M0674)

Lecture: Financial Mathematics (3 Credits)

Name in diploma supplement

Lecture Financial Mathematics

Organisational Unit

Lehrstuhl für Energiehandel und Finanzdienstleistungen

Lecturers

Prof. Dr. Rüdiger Kiesel

Hours per week

2

Language

English

Cycle

winter semester

Participants at most

###LABEL_NOLIMIT###

Preliminary knowledge

Good knowledge in mathematical statistics and econometrics.

Abstract

Discussion of essential mathematical valuation principles and techniques both in time-discrete and time-continuous models. Introduction and implementation of probabilistic and statistical methods. Analysis of stock, interest and commodity markets and also of the most common assets and derivatives in these markets.

Contents

  1. Mathematical models for price processes in stock, interest, and commodity markets
  2. Arbitrage theory and hedging strategies
  3. Stochastic models for financial markets: martingales and fundamental theorems in asset pricing
  4. Valuation and hedging of derivatives: European , American and exotic options
  5. Incomplete markets and stochastic volatility

Literature

  • N.H. Bingham & R. Kiesel, Risk Neutral Valuation, 2nd edition, Springer, 2004.
  • M. Joshi, The Concepts and Practice of Mathematical Finance, CUP, 2003
  • S. Shreve, Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004

Teaching concept

Presentation, discussion

Lecture: Financial Mathematics (WIWI‑C0824)

Exercise: Financial Mathematics (3 Credits)

Name in diploma supplement

Exercises Financial Mathematics

Organisational Unit

Lehrstuhl für Energiehandel und Finanzdienstleistungen

Lecturers

Prof. Dr. Rüdiger Kiesel und Mitarbeiter

Hours per week

2

Language

English

Cycle

winter semester

Participants at most

###LABEL_NOLIMIT###

Preliminary knowledge

Good knowledge in mathematical statistics and econometrics.

Abstract

Recap and practice concepts and methods covered in the lecture.

Contents

  • Examples of asset valuation
  • Statistical methods and data analysis
  • Implementation of theoretical concepts within the context of programming tasks

Literature

See lecture

Exercise: Financial Mathematics (WIWI‑C0825)