Modul: Sustainability with Machine Learning (6 Credits) | |
---|---|
Name im Diploma Supplement | Sustainability with Machine Learning |
Verantwortlich | Prof. Dr. Hannes Rothe |
Voraussetzungen | Siehe Prüfungsordnung. |
Workload | 180 Stunden studentischer Workload gesamt, davon:
|
Dauer | Das Modul erstreckt sich über 1 Semester. |
Qualifikationsziele | Students will be able to
|
Prüfungsmodalitäten | Zum Modul erfolgt eine modulbezogene Prüfung in Form einer Klausur (in der Regel: 60-90 Minuten, 50% der Note) und eine Hausarbeit (5-10 Seiten, 50% der Note). |
Verwendung in Studiengängen |
|
Bestandteile |
|
Modul: Sustainability with Machine Learning (WIWI‑M0950) |
Vorlesung: Sustainability with Machine Learning (3 Credits) | |||
---|---|---|---|
Name im Diploma Supplement | Sustainability with Machine Learning | ||
Anbieter | Lehrstuhl für Wirtschaftsinformatik und Sustainable Supply Chain Management | ||
Lehrperson | Prof. Dr. Hannes Rothe | ||
Semesterwochenstunden | 2 | Sprache | englisch |
Turnus | Wintersemester | maximale Hörerschaft | ###LABEL_NOLIMIT### |
empfohlenes VorwissenThe students should have a basic knowledge of information systems and be familiar with:
| |||
AbstractSustainability with Machine Learning explores the integration of machine learning techniques into sustainability domains to address environmental and social challenges. This course covers the foundations of machine learning, deep neural networks, and sustainable development applications. Students will gain knowledge of how machine learning may increase sustainability in decision-making, facilitate environmental monitoring, better supply chain management, and optimize energy efficiency. This course also reflects on using AI fairly and with ethical considerations in order to promote sustainable practices. | |||
Lehrinhalte
| |||
Literaturangaben
Further literature will be provided during the course | |||
didaktisches KonzeptThere will be lectures in a traditional way, but students will have the opportunity to critically reflect on recently learned material during class discussions and engage with the lecturer in open discussion, enabling active student participation. Problem solving exercises along with some short practical tasks will be provided as assignments to the students in a student-centered approach where each student can assess their understanding of different topics. For more hands-on-experience and collaborative learning, there will be project-based learning from the mid of the semester in which students will work on an AI project in small teams which may culminate in presentations, reports, or prototypes. | |||
Vorlesung: Sustainability with Machine Learning (WIWI‑C1219) |
Übung: Sustainability with Machine Learning (3 Credits) | |||
---|---|---|---|
Name im Diploma Supplement | Sustainability with Machine Learning | ||
Anbieter | Lehrstuhl für Wirtschaftsinformatik und Sustainable Supply Chain Management | ||
Lehrperson | Prof. Dr. Hannes Rothe, Mahnoor Shahid | ||
Semesterwochenstunden | 2 | Sprache | englisch |
Turnus | Wintersemester | maximale Hörerschaft | ###LABEL_NOLIMIT### |
empfohlenes VorwissenSee lecture | |||
AbstractSee lecture | |||
LehrinhalteSee lecture | |||
LiteraturangabenSee lecture | |||
didaktisches KonzeptThe conceptual structure of these tutorials focuses primarily on assisting in assignments, development of the project, emphasize teamwork, group discussions, and presentation sessions. | |||
Übung: Sustainability with Machine Learning (WIWI‑C1220) |