Modul: Mathematische Algorithmen der Informatik (6 Credits)

Name im Diploma Supplement

Mathematical Algorithms in Computer Science

Verantwortlich

Dipl. Math. Alexander Lewintan

Voraus­setzungen

Siehe Prüfungsordnung.

Workload

180 Stunden studentischer Workload gesamt, davon:
  • Präsenzzeit: 60 Stunden
  • Vorbereitung, Nachbereitung: 90 Stunden
  • Prüfungsvorbereitung: 30 Stunden

Dauer

Das Modul erstreckt sich über 1 Semester.

Qualifikations­ziele

Die Studierenden

  • besitzen fachliche Kompetenzen in grundlegenden mathematischen Themen und ihrer Umsetzung in programmierte Algorithmen
  • sind in der Lage, diese Themen zu erläutern und die Eigenschaften von zugehörigen Algorithmen und deren praktische Einsatzmöglichkeiten zu beurteilen
  • können geeignete mathematische Methoden auswählen, zugehörige Algorithmen entwickeln und implementieren
  • können diese Algorithmen praktisch erproben und die erzielten Ergebnisse interpretieren

Prüfungs­modalitäten

Zum Modul erfolgt eine modulbezogene Prüfung in der Gestalt einer mündlichen Prüfung (in der Regel: 20-40 Minuten).

Verwendung in Studiengängen

  • LA Info GyGe Master > Wahlpflichtbereich Informatik > 1.-3. FS, Wahlpflicht
  • Mathe Master > Anwendungsfach "Informatik" > weitere Informatik-Module > 1.-2. FS, Wahlpflicht
  • SNE Master > Wahlpflichtbereich > 1.-3. FS, Wahlpflicht
  • TechMathe Master > Anwendungsfach "Informatik" > weitere Informatik-Module > 1.-2. FS, Wahlpflicht
  • WiInf Master > Wahlpflichtbereich > Wahlpflichtbereich II: Informatik, BWL, VWL > Wahlpflichtmodule der Informatik > 1.-3. FS, Wahlpflicht

Bestandteile

  • Vorlesung mit integrierter Übung Mathematische Algorithmen der Informatik (6 Credits)

Modul: Mathematische Algorithmen der Informatik (WIWI‑M0409)

Vorlesung mit integrierter Übung: Mathematische Algorithmen der Informatik (6 Credits)

Name im Diploma Supplement

Mathematical Algorithms in Computer Science

Anbieter

Dipl.-Math. Alexander Lewintan

Lehrperson

Dipl. Math. Alexander Lewintan

Semesterwochenstunden

4

Sprache

deutsch

Turnus

Sommersemester

maximale Hörerschaft

20

empfohlenes Vorwissen

Es werden Kenntnisse in Linearer Algebra erwartet, wie sie in der Regel in einem Informatik-Bachelorstudium vermittelt werden.

Abstract

In diesem Kurs werden verschiedene für Informatiker relevante mathematische Modelle aus der modernen Mathematik behandelt und geübt.

Qualifikationsziele

Die Studierenden

  • überblicken die Hauptideen der modernen Mathematik
  • beherrschen deren praktische Anwendung in der Informatik

Lehrinhalte

  • Elemente der Zahlentheorie
    • Lineare diophantische Gleichung
    • Der Euklidische Algorithmus
    • Lineare Kongruenz
    • Primzahlen
  • Elemente der Gruppen Theorie und RSA-Verfahren
  • Ringe und Körper, Körpererweiterung

Literaturangaben

  • S. Bosch: Algebra; Springer Verlag
  • H. Lüneburg: Gruppen, Ringe, Körper; R. Oldenbourg Verlag
  • K.-U. Witt: Algebraische und zahlentheoretische Grundlagen für die Informatik; Springer Vieweg Verlag
  • G. A. Jones and J. M. Jones: Elementary Number Theory; Springer Verlag

didaktisches Konzept

Die Veranstaltung entspricht einem Vorlesungsanteil von 2 SWS und einem Übungsanteil von 2 SWS.

Vorlesung mit integrierter Übung: Mathematische Algorithmen der Informatik (WIWI‑C0590)